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where pi is the radius of curvature of the apex of the t-th inclusion. 
As an illustration, we present the value of a numerical analysis of (2.13) for the case 

of an infinite space with two identical spheroidal inclusions. A field of uniaxial tension 
in the direction of the axis of the inclusions is given at infinity. The results arerepresent- 
ed in Fig. 2 for different values of the parameter fl=alc where v=~=O.3, and Hla=2. 

Also presented for comparison are the data from /6/ (the dashed line) obtained by the 
method of equivalent inclusion. As is seen from the curves, there is good agreement between 
the results even for fairly thick inclusions and a broad range of variation of the parameter 
El = E1l.E. 
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The results in /7-9/ follow from (2.13) and (2.16) as special cases. 
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THE STANDARD EQUATION METHOD IN THE DYMU4ICS OF 
STRUCTURALLY INHOMOGENEOUS ELASTIC tEDIA* 

A.V. CHIGAREV 

The development of the standard equation method is examined for 
studying harmonic wave propagation in stochastically inhomogeneous elastic 
media. The Helmholtz operator equation describing the propagation of a 
mean scalar field in a medium is investigated as the standard equation. 
For an arbitrary correlation function of the elastic coefficients of the 
medium, the roots of the dispersion equation are found by expanding them 
in a series in the dispersion parameter, and the eigenvectors of the 
operator are correspondingly determined approximately. For media of the 
exponential class, the roots and eigenfunctions of the standard problem 
are determined exactly. Results obtained in solving the standard problem, 
are used in investigating wave propagation in elastic media; the roots and 
eigenvectors are found in the form of a series expansion in the dispersion. 
A relationship is set up between the spectra of the elastic operator and 
the operator of the standard problem. Formulas are obtained to find the 
mean elastic fields (including the eigenvectorsl in terms of the mean 
standard functions in the form of scattering series. 

The elastic operator in an isotropic homogeneous body has eigenvectors 
in the formof longitudinal and transverse waves satisfying .the Eelmholtz 
equations. The eigenvalues and vectors of an elastic operator are a set 
of eigenvalues and vectors of the Relmholtz operator /l/. The elasticity 
equations do not split into Helmholtz equations or scalar equations in the 
general case in an inhomogeneous medium. This can be done for high 
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frequencies /2/ and certain particular kinds of inhomogeneities /3/. 
The method of standard equations /4,5/ enables the form in which the 

eigenfunctions and eigenvalues of the problem under investigation must 
be sought, to be determined for stochastically inhomogeneous media, the 
eouations for the mean field are integro-differential: the medium 
possesses spatial dispersion. The dispersion equations are transcendental 
and the roots can only be found approximately. We take the Helmholtz 
operator equation /6/ as the standard equation, then the roots of the 
dispersion equation and the eigenfunctions are found exactly for the class 
of media characterized by an exponential correlation function, The results 
of solving the standard problem are used in solving the elastic problem, 
where the eigenvalues of the elastic operator are expressed in terms of 
the roots and eigenvectors of the standard problem, The standard solution 
&scribes qualitatively wave propagation in a structurally inbomogeneous 
medium, which enables us to speak of the similarity between corresponding 
dispersion laws gna damping /7/. The dimensionless parameters in which 
the quantities in both problems are expanded are the dispersion and the 
product of the correlation radius by the wave number /7,8/. 

1. The displacement vector u in a harmonic wave being propagating in a stochastically 
inhomogeneous elastic medium satisfies the equations 

~u+Paozu=90, &r-Vj&jrr(x)g* W) 

Here &W depends on x in a random manner, pp is the constant density, and o is the 
frequency. 

Introducing the effective elastic operator h* by the relationship 

and taking the average of (l,l), we obtain a closed system of equations for <u> 

L* (U) + fi@* (U) = 0, I$ li: V&cjttV, 0.3) 

For a statistically isotropic homogeneous medium , the elastic operator A* has the form 

A* = jA* (x-xr)$ Cf.41 
The eigenvectors of the operator (1.4) are on the average plane waves /6/ 

<u(x)) = u(q)@W (1.51 

Longitudinal {u') and transverse <u*> waves exist in the medium under consideration, and 
we have 

(u) = (u’) + (u’), (IF) = ua fqa) e*la” fW 

Taking account of (1.5) and (1.61, dispersion equations in q a follow from equations (1.3) 

Aa = gas - Pooa&-l (qcl, 0) = 9 (1.7) 

Here A, are the eigenvalues of the tensor 

LTk (q) =I s L:k (r) e-iQ+ dr $8) 

The explicit analytic form &(q,,o)depends on the specific form of the correlation 
dependence hijti (x). However, independently of the form of the correlation function for a 
statistically isotropic homogeneous medium , the quantity & depends on qaa and can be 
represented in the form of an entire function of pas in the complex qas plane. 

To find A, (q$, CO) taking multiple scattering into account, we apply the method of 
replacement of the field quantities /6/; we then obtain 

A, (qr, 4 = Ate + I’* (-I- LW*)-1 + “/a~, (ql, co) 

A, (q, 10) = At, + ra* (1 - LW,*) -1 

At, = ~0, A,, = K, + blspo 

(1.9) 

Here K,, p. are the effective bulk and shear elastic moduli, r* (q, of, f,* (q,o) are 
eigenvalues of the polarizability operator I'* of the medium under consideration 
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Here F-t is a constant tensor governing the tensor dependence of the correlation 

tensor RY~I (r) of the field ~ijkl (xj: Rrdi (r) = <yp(Ut(~)ynM~(~l)>r and the correlation function 

R(r) governs the coordinate endence of the correlation tensor Rrdl(r). For a strongly 
isotropic medium, the tensors @f,%,$kf(qt o),ytjki (qr b-)) have the form 

Without 
Y&r @t 4 by 
system under 

F* (41 cp) - Fl' (q, 0) za + pa* (q, 4 1’ vi* = rr*, h‘*, yf*) (1.11) 

1’ - ~,&,r, ’ z’ - “ik hi+, -+ 6f18jk) 

I‘* = rz* + %r**, P -hi* f Qi*, y* = y1* f Qk* 

rx*- 3(37? C:'tYI*)* ra*=3(2yl* + yz’). F,-=O (f==3,4,5*6) 

specifying the form of the correlation function, we calculate the components of 
means of the third formula in (1.10) _ We now consider the spherical. coordinate 
the integral and integrate with respect to the angles, we then obtain /6,9/ 

Yl*=4&) - #, - &)%I + z-'Y%* (1.12) 

Y?fgi- zea[p',a)- 3f&S,, + 2&G + 2&&P@ + &#21t 

Ph J f js (I) Il;iPw5R (r) r’ dr, a - 1, t 
0 

Z-V, ya- #r k 0, - kaa (p,,c=‘)-1, cas = &&’ 

Here j,(q,r) is the spherical Bessel function. 
We represent jn (qr) in the form 

We then obtain 

Taking (1.13) into account, we write (1.12) in the form 

Therefore, 

(U3) 

(1.14) t = I,2 

y!“’ x - 8, [P$fF) - iP:'ty' - P&4g] + 2-y$“’ 

#'----2eol[P$~) - 31@~~+3q:~~ + 2P~:+cb+ 2iP;z7%Cb+ P&]tl 

the eigenvalues of the polarizability operator T * (q,u) a.re entire functions 

of @' in the complex qa plane. 

2. We now examine the standard problem of harmonic wave propagation in a randominhomoge- 

neousmedium. Thesimplesttbree-dim8nsionaL problem is described by the Iielmholtz equation 

/4-6/, for which it is possible to obtain analytic expressions in transparent form. 

This is beCaUSe the dispersion equation has a simple form, and the roots can be evaluated 

fairfy easily. Correspondingly, the frequency dependenaes of the velocities and the scattering 

coefficient have a comparatively simple form. The Helmholtz equation is used as a standard 

for investigating wave propagation in inhcunogeneous media in electrodynamics /5/, and in 

elasticity theory /2,4/. We ignore effects associated with wave pokUisati.On /5/ here. It 
is established that for short (high-frequency) waves the dynamic equations for inhcmogeneous 
media can be split into H&nholtz equations for longitudinal and transverse waves /2/. 

We will show that the eigenvalues of an elastic operator fox a stochastically inhomoge- 

neous elastic medium are expressed in terms of the eigenvalues of a generalized Belmholtz 
operator while the roots of the dispersion equations (1.7) and the eigenvectors (1.5) are 
expressed in terms of the roots and eigenvectors of the corresponding standard problem, We 

write the standard equation in the form 

Arp + l&(x)m = 0 (2.1) 

where ka is tbesquareof the wave number of the effective homogeneous medium, k(x)== n'(x) is 

the square of the refractive index n(x) = c@(x) which is a random function of the space 

coordinates, c(x)is the veLocity in th8 inhomogeneous medium, and CO is the vd.OCity in the 

effective homogeneous medium. 
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The averaged equation (2.1) is later considered as standard for operator equations 
corresponding to (1.7), which the longitudinal and transverse waves <u"> of the elastic 
problem satisfy, on the average. We consequently ascribe the index a to the quantities cp,k, 

A, c (x)9 co I where a= t when considering the longitudinal waves and a = t when considering 
the transverse waves on the average. Henceforth, the index a will not be written on the 
quantities mentioned. We introduce the effective operator of the standard problem by the 
relationship 

<G> = A* <cp> (2.2) 

Taking account of (2.2) when averaging (2.11, we obtain standard equation for (cp) 

A (cp> + PA* <cp> = 0 (2.3) 

For a statistically isotropic homogeneous medium A ** has the form (1.4), while the 

eigenvectors have the form (1.5) although h* (x-x1) and u(q) are different. 
We write the dispersion equation in the form 

A = qa - kBA+ (q, o) = 0, A* = ho (1 - I’* (q, co))-’ 

F* (q) = jr* (r)C+.*dr, (P = A*, r*; f* = a+, r*) 

For an arbitrary correlation function R (r) = <v(x) y(rJ> we have 

(2.4) 

Using the recurrence 
formula for Qnp 

We use the notation 

We then obtain 

r*(q,o)=ak2~R(r)e”‘jo(qr)dr=akPo1(q,o)= (2.5) 

O ss aWIQol, Qnp= j,(z)z*-~efxrR(za-l)dz 
0 

x = kg-l, a = aq, P,p = xpq*Q,p 

relations for spherical Bessel functions /lo/, we obtain a recurrence 

Qii+~ = (2n + 1) Q,P+l - QL (2.6) 

2--p-m-n, Qn* =~j.(~)sm~~fuE1(~-)dz 
0 

Q 2 = (2n + 1) 0:“’ - Qm,_;’ (2.7) 

Formulas (2.6) and (2.7) do not provide any possibility of expressing the eigenvalues 
I'* (q, to) of the elastic problem for an arbitrary correlation function in terms of the 
w) of the corresponding standard problem. 

r* (ql 

We will examine the class of media described by correlation functions of the form 

R (r) = A (ra -1 l’sa’, k = __1, 0 ) (2.8) 
where a is the correlation radius, and A,d are complex quantities. 

We set k = 0,A = R,,d= a-‘; we then obtain in (2.5) 

I'* (q, o) = kWQo’, Qol c F 1, + ; + ; - fl?) - (1 + fi-?)-l, 
( 

fj e q-l, s==aml-ik (2.9) 
Setting k= --i,A = Ro,d= a” in (2.81, we obtain 

r* (q, a~ = Rt,ak”fi--‘F (+ , i; + ; - fP) - R&‘Qoo (p) = R&c’ arotg p-1 

The correlation function of a Markov field of the form 

R(r)= Rajo(ra-l)= +&%"I: 

A = aRo (2f)-I, & = --(-I)” fa, k 3 -1, f, IIs = fs - fl 

r* (4, 0) = 2 [Of (I$+) -t 93 (Bcl)l, PI = (1 - ak) a-l 

(2.10) 

(2.11) 

&=(l +ak)a-1, Qoo= 

can be reduced to the form (2.8), 
For the kinds of correlation functions under consideration, the coefficients pmp (Qn"), 

and therefore also r* (q,a) in (2.9)-(2.111, are evaluated in terms of the hypergeometric 
functions 
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Using the well-known Gauss recursion formulas for the hypergeometric functions /9,10/, 
in addition to (2.6) and (2.7), recurrence formulas can be obtained for Q,,“‘{P,,p) for correla- 
tion functions of the form 

QL = (2~fi)~*+(4n--Zm+1) Q m (1 f B') Qz2 
(2R+l--m)(zn+2-m) n - (2n+l-mn)(2n+z-mm) 

OF+' = @-'tQ% - (Zn - m)Qsm] 

(2.12) 

We consider the calculation of the sigenvalues of the polarizability operator I'* fq, of 

using formulas (1.11) and (1.12). 
in terns of Qf and Qd 

Formulas (2.6),(2.7) and (2.12) enable us to express Qnm 

Qn”L = A,“Qe” + %“Q,’ (2.13) 

A++, B~0s-Alg, &oabs”‘, B#=w-.@-“, b+m,i +@” 

Taking account of (2.9),(2.10), we obtain the following representation from (2.14) 

r* - ri") f T$er@) + z$O)r(*), rp* _@ + T$'r"' + @r" (2.15) 

I?’ P akaRoQoo, I’@) = k%*R&“, Q1’ w 1 - &IO” 

T!"' - - ~(R&~)-~z;*~, T,@ w R~‘k~~~~~ 

TI* W - p (&sky 9) 1, T$@ = &‘k%‘$’ 

Therefore, the eigenvalues of the polarisability operator of the elastic problem r* (9, 
+r,* (% fN are expressed in terns of the eigenvalues pa) (pI o),Fr) {q, w) of the standard 
problems (2.9),(2.10), respectively. Because of (1.9), the eigenvaluesofthe elastic operator 

;t (PC%* 0) are expressed in terms of r(') (qcr, o) of two standard problems. The eigenvalues 
in the standard problem r@) (q, o) are the polarisability operator, taking acsount of 

multiple scattering, and are related to the eigenvalues A(') (q, o) of the operator A* by the 
formula 

r* (Q, 4 J (A* k 0) - h,) A*-’ k7, 4 (2.16) 

Thus, the eiqenvaiues of the elastic operatox are expressed in terns of the eigenvalues 
of the operators A* of the corresponding standard problems. For example, for an elastic 
medium with the exponential correlation function (2.8) with k=O, A = Be, d= a-‘, the 
eigenvalues l?‘(q, 0) are expressed by means of (2.15) in terms of the eigenvalue r(l) (9, 0) 
of the standard problem for a medium with the same correlation function and in terns Of the 

eigenvalue lW(q, of of the standard probl.em for amedium with the correlation function (2.9) 
with k = --1, A = R,,, d = a-‘. 

3. We examine evaluation of the eigenvectors and roots of dispersion equations of the 
elastic probY.em in terms of the corresponding quantities of the standard problem. On average, 

thelongitudinaland transverse waves in an elastic medium satisfy the equations 

A&&' (u") + ?&= <us> = 0, Q = 1, t (3.1) 

The corresponding standard equations have the form 

A&y <pa> + h$ <cpa> = 0, a = I, t (3.2) 
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Here A&r is the inverse operator to A* in (2.2). We later omit the subscript a but 

retaining the subscript u to denote quantities in the elastic problem and the subscript cp 
for the standard problem. 

The integral equation 

<u=>=<cp">-&z,(x -xr)A&'(xr)(x=)dxr (3.3) 

&=&-A;,, (AA&+ka)Gae=6(x-x~) 

is equivalent to (3.1) and (3.2). 
Solving (3.3) by successive iterations, we obtain 

<u=)=T=*(~"), T,*= i + 5 Ga&&’ dxl + 1s GavGagha’A&’ dxz dxe + . . . (3.4) 

There is no summation over repeated subscripts in (3.1)-(3.4). The solution <ma> in 
the form of the scattering series (3.4) takes account of the successive rescattering of the 
"standard" wave by the average inhomogeneities of the elastic medium. 

The dispersion equations corresponding to (3.1) and (3.2) are written, respectively, in 
the form 

qo#= kaeAg (q@., 0). B = ml cp (3.5) 

From (3.5) we obtain an equation to calculate perua in terms of @en 

Solving (3.6) by successive iterations, we find 

(3.7) 

The eigenvectors of the operators A:' and A:’ for a statistically isotropichomogeneous 
medium have the form sxp (iq%.x) and exp (iq9.x). The eigenfunctions of an elastic operator 
are expressed in terms of the eigenfunctions of the standard operator 

exp(iq,.x)=exp(2q,.x)exp(t+x) (3.3) 

q = &‘A& hv 0) -I- at ‘9’ 
‘- q - Quo - qq? q$O = q&?, B = u* cp 

The first term in the vector 9 in (3.8) takes account of the difference of q,, from q1 
because of the difference in the eigenvalues Auup’, while the second is because of the dif- 
ference in the directions of the elastic and standard vectors. 

Calculation of the approximate eigenvectors and the roots of the elastic problem in terms 
of the standard values is a result of extending the standard operator to the elastic operator 
/11,12/. Note that (3.7) enables us to relate the distribution of the roots /13/ of the 
elastic and standard problems. 
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APPLICATION OF DUALITY METHODS IN PROBLEf4S OF 
OPTIMIZING THE SHAPE OF ELASTIC BODIES* 

L.V. PETUEBOV and S.I. REPIN 

A method is proposed for obtaining estimates of the magnitude of the 
global extremum in plate and three-dimensional body shape-optimization 
problems. This enables an estimate to be made of the ultimate possibilities 
of optimization. In certain cases, a control is constructed successfully 
for which the values of the objective functional will be close, and 
sometimes even equal, to the magnitude of the global extremum. 

Free vibrations of thin plates m Let there be a domain SE@ with piece- 
wise-820th boundary I'= I'r U I", IJ r,. The frequency 0 of free vibrations of a plate of 
thickness h is given by the following relations: 

o* = min0 (h, 10); CD (k, 10) = n (h, ta)/T (k, W) (1.1) 
WSV 

n (h, w) = 
ii 

Dh+p (2, y) da; T (h, w) = s #up (2, y) cm 

D = E/(12 (I - G)), q~ = w’, ‘Ip :(Azu)' - 2 (1 - v)’ 

* (m rx+%y - d9,“) 
v = {U 1 u E W,a (Q); u = u,~ = 0 on rt, u = 0 on rr) 

Here I is Young's modulus, v is Poisson's ratio, p is the density, w is the deflection, 

21 Y are Cartesian coordinates of a point, and v,,, denotes the derivative along the normal 
to the contour r. The optimization problem is as follows: it is required-to find h* and w* 
such that 

Q, (h*, w')=.~~inJvfD (h, w) (4.2) 

H~{LEL~(CI)IShdBPh,mesn, h~<h=G&} 
0 

h>h>h>O 

where mea P denotes the Lebesgue measure of the domain !& 
It is known that in problems of this kind, the existence of generalized solutions /5,6/ 

is possible in addition to piecewise-smooth solutions /l-4/. moreover, problem (1.2) is 
non-convex; consequently, different numerical algorithms only result in locally optimal 
solutions /7,8/. However, attempts can be made to find the function h=H for which the 
value of the objective functional is less than the supremum by a certain smdl quantity e. 

For this it is necessary to estimate the value of the SUpremUm , as can be done by using the 
dual problem. 

The following problem is called the dual of the original /9/: Find h*, WC such that 

cp(h+,w*) "Zv ml&D (h,w) (1.3) 

The following inequalities are obviously valid 

sn& i$@(h, w) 62s~ Q, (h, w) (1.4) 

and can be used to construct upper bounds for the magnitude of the supremum in problem (1.2). 
we use the notation 

QO = sup Cp (h, IV@), wo E i’ (1.5) 
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